Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(6)2022 06 14.
Article in English | MEDLINE | ID: covidwho-1911629

ABSTRACT

While SARS-CoV-2 detection in sputum and swabs from the upper respiratory tract has been used as a diagnostic tool, virus quantification showed poor correlation to disease outcome and thus, poor prognostic value. Although the pulmonary compartment represents a relevant site for viral load analysis, limited data exploring the lower respiratory tract is available, and its association to clinical outcomes is relatively unknown. Using bronchoalveolar lavage (BAL) and serum samples, we quantified SARS-CoV-2 copy numbers in the pulmonary and systemic compartments of critically ill patients admitted to the intensive care unit of a COVID-19 referral hospital in Croatia during the second and third pandemic waves. Clinical data, including 30-day survival after ICU admission, were included. We found that elevated SARS-CoV-2 copy numbers in both BAL and serum samples were associated with fatal outcomes. Remarkably, the highest and earliest viral loads after initiation of mechanical ventilation support were increased in the non-survival group. Our results imply that viral loads in the lungs contribute to COVID-19 disease severity, while blood titers correlate with lung virus titers, albeit at a lower level. Moreover, they suggest that BAL SARS-CoV-2 copy number quantification at ICU admission may provide a predictive parameter of clinical COVID-19 outcomes.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Illness , Humans , Lung , Viral Load
2.
Eur J Immunol ; 52(6): 936-945, 2022 06.
Article in English | MEDLINE | ID: covidwho-1750364

ABSTRACT

COVID-19 vaccines prevent severe forms of the disease, but do not warrant complete protection against breakthrough infections. This could be due to suboptimal mucosal immunity at the site of virus entry, given that all currently approved vaccines are administered via the intramuscular route. In this study, we assessed humoral and cellular immune responses in BALB/c mice after intranasal and intramuscular immunization with adenoviral vector ChAdOx1-S expressing full-length Spike protein of SARS-CoV-2. We showed that both routes of vaccination induced a potent IgG antibody response, as well as robust neutralizing capacity, but intranasal vaccination elicited a superior IgA antibody titer in the sera and in the respiratory mucosa. Bronchoalveolar lavage from intranasally immunized mice efficiently neutralized SARS-CoV-2, which has not been the case in intramuscularly immunized group. Moreover, substantially higher percentages of epitope-specific CD8 T cells exhibiting a tissue resident phenotype were found in the lungs of intranasally immunized animals. Finally, both intranasal and intramuscular vaccination with ChAdOx1-S efficiently protected the mice after the challenge with recombinant herpesvirus expressing the Spike protein. Our results demonstrate that intranasal application of adenoviral vector ChAdOx1-S induces superior mucosal immunity and therefore could be a promising strategy for putting the COVID-19 pandemic under control.


Subject(s)
COVID-19 , Viral Vaccines , Adenoviridae/genetics , Administration, Intranasal , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Cellular , Immunity, Mucosal , Mice , Mice, Inbred BALB C , Pandemics/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination/methods
3.
BMC Med ; 20(1): 102, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1724486

ABSTRACT

BACKGROUND: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS: All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS: Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION: These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.


Subject(s)
COVID-19 , BNT162 Vaccine , COVID-19/prevention & control , Humans , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Viruses ; 14(2)2022 02 21.
Article in English | MEDLINE | ID: covidwho-1702211

ABSTRACT

In early 2020, the COVID-19 pandemic sparked a global crisis that continues to pose a serious threat to human health and the economy. Further advancement in research is necessary and requires the availability of quality molecular tools, including monoclonal antibodies. Here, we present the development and characterization of a collection of over 40 new monoclonal antibodies directed against different SARS-CoV-2 proteins. Recombinant SARS-CoV-2 proteins were expressed, purified, and used as immunogens. Upon development of specific hybridomas, the obtained monoclonal antibody (mAb) clones were tested for binding to recombinant proteins and infected cells. We generated mAbs against structural proteins, the Spike and Nucleocapsid protein, several non-structural proteins (nsp1, nsp7, nsp8, nsp9, nsp10, nsp16) and accessory factors (ORF3a, ORF9b) applicable in flow cytometry, immunofluorescence, or Western blot. Our collection of mAbs provides a set of novel, highly specific tools that will allow a comprehensive analysis of the viral proteome, which will allow further understanding of SARS-CoV-2 pathogenesis and the design of therapeutic strategies.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Viral/pharmacology , SARS-CoV-2/immunology , Viral Proteins/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Monoclonal/classification , Antibodies, Viral/immunology , COVID-19/therapy , COVID-19/virology , HEK293 Cells , Humans , Recombinant Proteins/immunology , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL